因为分布式系统对大量数据的存取更具优势。尽量少的有数据修改。因为hbase中的数据修改知识在后面添加一行新数据,表示覆盖前一条,大量修改浪费大量空间。
HBase在产品中还包含了Jetty,在HBase启动时采用嵌入式的方式来启动Jetty,因此可以通过web界面对HBase进行管理和查看当前运行的一些状态,非常轻巧。
优化原理:HBase分别提供了单条put以及批量put的API接口,使用批量put接口可以减少客户端到RegionServer之间的RPC连接数,提高写入性能。另外需要注意的是,批量put请求要么全部成功返回,要么抛出异常。
对象存储:HBase可以作为中等对象存储,对HDFS存储文件起到缓冲过渡的作用,减轻了NAMENODE元数据维护的压力。消息/订单存储:因为HBase提供低延时、高并发的访问能力,所以可以用于电商平台等场景的消息和订单存储。金融方面:HBase可以用于存储消费信息、贷款信息、信用卡还款信息等。
负载均衡 负载均衡将是大型网站解决高负荷访问和大量并发请求采用的高端解决办法。 负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择,我个人接触过一些解决方法,其中有两个架构可以给大家做参考。
系统拆分 将一个系统拆分为多个子系统,用dubbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,这样就可以抗高并发。2:缓存,必须得用缓存 大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。
libevent:libevent是一个事件驱动的网络库,它可以帮助你处理大量的并发连接。它提供了高效的事件循环和异步I/O操作,适用于构建高性能的网络应用程序。 Nginx:Nginx是一个轻量级的高性能Web服务器,它采用事件驱动的架构和非阻塞I/O模型,能够处理大量并发连接。
解决方案:提高硬件能力、增加系统服务器。(当服务器增加到某个程度的时候系统所能提供的并发访问量几乎不变,所以不能根本解决问题)本地缓存:本地可以使用JDK自带的Map、Guava Cache.分布式缓存:Redis、Memcache.本地缓存不适用于提高系统并发量,一般是用处用在程序中。
1、如何处理并发和同步 今天讲的如何处理并发和同同步问题主要是通过锁机制。我们需要明白,锁机制有两个层面。
2、优化数据库结构,多做索引,提高查询效率。统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能。能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)。解决以上问题后,使用服务器集群来解决单台的瓶颈问题。
3、第三步异步处理:秒杀系统是一个高并发系统,采用异步处理模式可以极大地提高系统并发量,其实异步处理就是削峰的一种实现方式。第四步内存缓存:秒杀系统最大的瓶颈一般都是数据库读写,由于数据库读写属于磁盘IO,性能很低,如果能够把部分数据或业务逻辑转移到内存缓存,效率会有极大地提升。